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1. INTRODUCTION

Linearization techniques are the most popular analytical tools in the determination of
response characteristics of non-linear dynamic systems. Historically, the earliest work in the
theory of statistical linearization was carried out simultaneously by Botton [1] and
Kazakov [2]. The objective of this method is to replace the non-linear elements in a model
by linear forms, where the coe$cients of linearization can be found using the speci"c
criterion of linearization. They used this approach to determine the characteristics of the
responses of stochastic dynamic systems. Caughey [3}5] proposed the idea of replacing
a non-linear oscillator with external Gaussian excitation by a linear one with the same
excitation. He called this approach equivalent linearization, similar to Krilov and
Bogoliubov [6], who studied deterministic vibrating systems by asymptotic methods. Since
in the literature there are several methods called equivalent linearization, in this paper, we
will call the Caughey approach presented in reference [5] standard equivalent linearization.
The statistical linearization technique proposed by Kazakov [2] and the standard
equivalent linearization are mainly treated in the literature as the same methods. However,
some authors in their papers or books introduce di!erent names for those techniques. For
instance, in the book of Roberts and Spanos [7] statistical linearization in &&Kazakov's
sense'' is described in the section entitled &&Nonlinear elements without memory''. Similarly,
in the book of Soong and Grigoriu [8] statistical linearization is introduced in section 6.4.1,
entitled &&Memoryless Transformations'' while equivalent linearization is introduced in
section 6.4.2 entitled &&Transformations with Memory''. Also, in a survey paper by Socha
and Soong [9] both approaches were separately reviewed. However, it is not mentioned in
any paper or book if the statistical and equivalent linearization methods are the same, or the
conditions under which they are realized or discussed. This problem was partially discussed
in the book by Roberts and Spanos [7].

The objective of this paper is to re-derive both approaches with the mean-square criterion
of the equivalency and Gaussian closure and to establish under what conditions both
linearization techniques are the same. For clarity of presentation, the study is restricted to
a non-linear oscillator excited by a stationary Gaussian white noise.

Consider a non-linear oscillator described by

dX"F (X) dt#G dm, (1)
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and m (t) is a standard Wiener process. For simplicity, the study is restricted to a stationary
case and it is assumed that su$cient conditions of the existence of the solution of equation
(1) are satis"ed. The application of a linearization technique gives the linearized oscillator in
the form
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2. STATISTICAL LINEARIZATION

Two cases corresponding to two types of non-linearities are considered.
Case (a): In the Kazakov approach [2], the objective of statistical linearization is to "nd

for the non-linear function
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a linear function
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where k
1

and k
2

are linearization coe$cients that minimizes the mean-square error de"ned
by
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where the averaging operation in equality (7) is de"ned by a non-Gaussian probability
density function of a two-dimensional variable.
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following algebraic equations (necessary conditions of minimum of criterion (7)):
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Case (b): A particular case, when the non-linear function in equation (1) depends on one
variable, for instance on x

1
is considered
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and a linearized function has the form

y"kx
1
, (11)

where k is a linearization coe$cient. Then, a criterion of equivalency is taken as the
mean-square error of displacement de"ned by
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where the averaging operation in equality (12) is de"ned by a non-Gaussian probability
density function of one-dimensional input variable g
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Hence, the linearization coe$cient k has the following form:
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3. STANDARD EQUIVALENT LINEARIZATION

Case (a): In the Caughey approach [5], the objective of equivalent linearization is to "nd
for the non-linear dynamic system (1) the equivalent linear dynamic system (3). Caughey
suggested rewriting equation (1) in the form

dX"[KX#F (X)!KX] dt#Gdm, (15)

where the matrix K has the form
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and to minimize the mean square criterion de"ned by
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where the averaging operation in equality (17) is de"ned by a non-Gaussian probability
density function of the two-dimensional variable X"[x
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The probability density function g
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) can be found by solving the corresponding

Fokker}Planck equation for system (1). Similar to the previous derivations, the
linearization coe$cients k

1
and k
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can be calculated from the following algebraic equations

(necessary conditions of minimum of criterion (17)):
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Case (b): Caughey in reference [5] also considered an example of a non-linear oscillator
when the function t depends on one variable, i.e., t (x

1
,x

2
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1
). As in the previous case,

Caughey suggested rewriting equation (1) in form (15), where the matrix K has the form
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and to minimize the mean square error of displacements de"ned by
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where the averaging operation in equality (21) is de"ned by a non-Gaussian probability
density function of the two-dimensional variable X"[x
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where g
N1

(x
1
, x

2
) is the probability density function of two-dimensional response vector

state (solution of equation (1)). It can be found by solving the corresponding Fokker}Planck
equation for system (1) where the non-linearity t (x
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) is replaced by / (x
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). In this case,

the solution can be found in an analytical form and is given by
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where c
N1

is a normalized constant.
In the particular case of the Du$ng oscillator, it has the form
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Hence, the linearization coe$cient k has the form
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It should be stressed, that many authors in their derivations of equivalent linearization do
not de"ne the averaging operation in equality (21). Some authors even made an error by
assuming that the probability density function g

Ni
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1
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2
), i"1, 2 is replaced by a Gaussian

one corresponding to the solution of a linearized system. They carryout this replacement
before di!erentiating with respect to the linearization coe$cients. It has been discussed, for
instance in references [10}13].

4. DETERMINATION OF RESPONSE CHARACTERISTICS

Following the remark from reference [7], it is noted that if for an isolated element the
distribution of the input process is known, then the evaluation of the expected quantities in
expression (9) or (14) is straightforward. However, when the non-linear element is
incorporated into an overall system, the distribution of the input to the non-linear element
is unknown. Therefore, in the general case, the probability density functions for non-linear
system (1) g
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authors Kazakov [2] and Caughey [5] suggested replacing them by their Gaussian
approximations.

Case (a) for statistical linearization: The probability density of the input two-dimensional
Gaussian variable de"ned by equation (6) has the form
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is the covariance matrix of the input two-dimensional Gaussian variable
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while the probability density function of the stationary response of linearized system (3) is
given by
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where c
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is a normalized constant. The corresponding averaging operations have the form
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The stationary moment equations for linearized system (3) are described by
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To determine the response the characteristics an iterative procedure is used, where the
moments in equalities (9) are replaced by the corresponding moments obtained by
application of the averaging operation (30). These moments are solutions of equation (31)
where Gaussian closure is applied. In case (a) of statistical linearization the iterative
procedure has the form

Procedure 1a.

(1) Substitute k
1
"u2

0
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2
"2hu

0
and solve equations (31).

(2) Replace the moments in equalities (9) by corresponding solutions of (31) and
determine new linearization coe$cients k

1
and k

2
using Gaussian closure.

(3) Substitute the coe$cients k
1

and k
2

into equations (31) and solve them.
(4) Repeat steps (2) and (3) until convergence.

Case (b) for statistical linearization: The probability density of the input one-dimensional
Gaussian variable de"ned by equation (11) has the form
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The corresponding averaging operations have the form
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To determine the response characteristics, a modi"ed version of Procedure 1a is used.
Procedure 1b

(1) Substitute k"u2
0

and solve equations (36).
(2) Replace the moments in equality (14) by corresponding solutions of equations (36)

and determine new linearization coe$cient k using Gaussian closure.
(3) Substitute coe$cient k into equations (36) and solve them.
(4) Repeat steps (2) and (3) until convergence.

Also, in case (b) the moments in equality (14) are replaced by the corresponding moments
obtained by the application of the averaging operation (35) and Gaussian closure. These
moments are solutions of equations (36).

In the case of standard equivalent linearization, the same iterative procedures as for cases
(a) and (b) of statistical linearization are used, where step (2) in Procedures 1a and 1b is
replaced by the following one:

In case (a) of standard equivalent linearization

(2a@) Replace the moments in equalities (19) by corresponding solutions of equation (31)
and determine new linearization coe$cients k

1
and k

2
using Gaussian closure.

In case (b) of standard equivalent linearization

(2b@) Replace the moments in equality (25) by corresponding solutions of equations (36)
and determine new linearization coe$cient k using Gaussian closure.

The replacement of moments in the iterative procedures for equivalent linearization is
equivalent to the replacement of the averaging operation (18) and (22) by operations (30)
and (35) respectively. Since in equality (35), [ ) ] is replaced by the function / (x

1
) the
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integration with respect to x
2

disappears (is independent of the integration with respect to
x
1

and is equal to 1). Hence, it follows that the "nal results (stationary moments) obtained
by statistical and standard equivalent linearization are the same.

5. CONCLUSIONS AND FINAL REMARKS

Two basic linearization techniques, statistical linearization and standard equivalent
linearization, with mean-square criterion and Gaussian closure have been re-derived and
application of both the techniques to the determination of stationary response
characteristics of a non-linear oscillator has been studied. From the detailed discussion
presented in the paper follows the main conclusion which is the answer for the question
stated in the title. In the general case, statistical linearization and standard equivalent
linearization are not the same methods. This statement follows directly from de"nitions of
averaging operations in both cases (a) and (b). Although the mean-square criteria of
equivalence and the necessary conditions of minimum of these criteria have the same
algebraic structure for both linearization techniques, the de"nitions of the averaging
operations appearing in these formulas are not the same. In case (a), the averaging
operations given by equations (8) and (18) are de"ned by two di!erent functions of two
variables. The di!erence between the averaging operations is even greater in case (b) where
the probability density function appearing in equation (13) is a function of one variable
while the corresponding probability density function appearing in equation (22) is
a function of two variables. From the presented iterative procedures, it follows that in all
cases of statistical and standard equivalent linearization, the moments in equalities (9) or
(14) and (19) or (25) are replaced by the corresponding moments obtained by the application
of the averaging operation (34) or (35) respectively where Gaussian closure is applied. These
moments are solutions of equations (31) or (36), respectively.

From the presented arguments, one can conclude that the di!erences between the
considered linearization techniques in application to the determination of the response
characteristics, are eliminated by iterative procedures. One can note that statistical
linearization and standard equivalent linearization are exactly the same methods when in
equation (15). The vector error e"F (X)!KX is treated as the di!erence between two
static elements isolated from the considered dynamic system i.e. it is replaced by
e"f
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) de"ned by equations (8) and (18), respectively, are assumed to be the same.

Finally, it should be noted that although the comparison of linearization techniques was
presented for a non-linear oscillator it can also be done for non-linear multi-dimensional
dynamic or static systems using results presented, for instance, in references [14] and [15].
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